Short communication

The first evidence of positive selection in peptidoglycan recognition protein (PGRP) genes of Crassostrea gigas

Yang Zhang, Ziniu Yu*

Key Laboratory of Marine Bio-Resources Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China

ARTICLE INFO

Article history:
Received 5 November 2012
Received in revised form 22 January 2013
Accepted 22 January 2013
Available online 14 February 2013

Keywords:
Positive selection
Peptidoglycan recognition protein
Crassostrea gigas

ABSTRACT

The oyster Crassostrea gigas is thought to have developed effective immunity to potentially harmful pathogens while under continuous exposure to marine microorganisms; however, the evolutionary mechanisms by which such immunity developed has not been understood. To understand the evolution of immunity, we characterized the family of peptidoglycan recognition proteins in the oyster (CgPGRPs). These proteins are crucial pattern recognition receptors for peptidoglycans (PGNs) and thereby, for activating the innate immune response of host. Herein, we identify seven new CgPGRP genes. Phylogenetic analysis of the seven new and five previously reported CgPRGP genes reveals that the CgPRGP gene family can be clustered into two groups, CgPRGPS and CgPRGPL. Moreover, the CgPRGPS group can be further divided into five subgroups. A codon-substitution model and three likelihood ratio tests (LRTs) suggest that seven sites in the CgPRGP family of genes have been subjected to strong positive selection (\(\omega = 3.035-4.143 \)). Three dimensional modeling revealed that these sites are found primarily at the periphery of coils and \(\alpha \)-helices rather than in \(\beta \)-strands, perhaps allowing PGRP to adapt to, and recognize, variability of PGN structure. In conclusion, our studies provide the first evidence of positive Darwinian selection in the CgPGRP family, contributing to a better understanding of the adaptive mechanism of host-pathogens interaction in marine mollusks.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Innate immunity provides the first line of defense against invading pathogens, and is the only line of immune defense in invertebrates. By recognizing constitutively expressed pathogen-associated molecular patterns (PAMPs) that are exclusively expressed in bacteria and viruses, hosts have evolved function-specific pattern recognition receptors (PRRs) that can provide the earliest detection of a pathogen and initiation of an immune response [1]. Peptidoglycans (PGNs), integral components of the cell wall in both gram-positive and gram-negative bacteria, consist of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) in \(\beta \)-1,4 linkage, cross-linked by short peptide stems composed of alternating L- and D-amino acids [2]. Metazoans from insects to mammals have evolved one type of PRR, known as peptidoglycan recognition proteins (PGRPs), that can specifically bind to PGNs [3].

As an important PRR of the innate immunity system, all PGRPs function in immune defense and are structurally related to bacterial amidases. Accordingly the host immune responses raised by PGNs can be terminated by means of PGRP hydrolytic activity. Several PGRPs have lost this enzymatic activity in Drosophila, including PGRP-SA and PGRP-SD; these proteins still serve as sensors of gram-positive bacteria via recognition of PGNs and they activate the Toll receptor pathway [4] [5]. Other PGRP members with amidase activity, such as PGRP-SC1, have been shown to control the IMD signaling pathway after bacterial challenge [6]. These examples demonstrate the diversification of PGRP function.

Under continuous exposure to marine water rich in microorganisms, the oyster Crassostrea gigas is thought to have evolved an effective immune system used to discriminate beneficial microorganisms or commensals from potentially harmful pathogens [7]. Therefore, rapid evolution of host PRRs should be crucial for survival during combat with pathogens. Five PRGPs were previously cloned in C. gigas, named CgPRGPs; these genes were confirmed as being involved in immune defense [8,9]. We here identify and characterize seven new genes encoding amidase/PGRP domains in C. gigas. These CgPRGP genes show a high level of diversity, and the following codon-substitution analysis reveals a strong effect of positive selection on the promotion of rapid divergence within the CgPGRP gene family.

* Corresponding author. Tel./fax: + 86 20 8910 2507.
E-mail address: carlzyu@scsio.ac.cn (Z. Yu).
2. Materials and methods

2.1. Database search and gene discovery

Homologs of PGRP were found by searching the Pacific oyster EST database using TBLASTN (http://www.ncbi.nlm.nih.gov/blast) with previously published PRGP sequence [8,9] as a query. Seven new PRGPs gene sequences were obtained and assembled using the ContigExpress program of the Vector NTI advance 10 software package (Invitrogen, USA). Domain structure was identified with the Simple Modular Architecture Research Tool (SMART) version 4.0 programs on line (http://smart.embl-heidelberg.de/).

2.2. Sequence analysis

2.2.1. Sequence alignment and phylogenetic analysis

Alignment of nucleotide and amino acids sequences of the 12 genes were performed using the ClustalX 1.81 software. An unrooted phylogenetic tree of the proteins was constructed using the neighbor-joining method of the MEGA 4.1 software package [10] with Poisson correction for all sites under pairwise deletion. The bootstrap values were estimated by 1000 replications and are given at each branch point.

2.2.2. Maximum likelihood analysis

The nucleotide sequences encoding the PGRP domain of the 12 genes were aligned according to their amino acid alignments, and all sequences were manually adjusted to remove the gaps and regions of misalignment prior to maximum likelihood analysis. The ratio of non-synonymous and synonymous substitutions, also named ω, was calculated with codon-substitution models by using the CODEML program of the PAML package [11,12]. Values of $\omega > 1$ indicate positive selection, while $\omega = 1$ and $\omega < 1$ indicate neutral evolution and purifying selection. Six codon-substitution models form three likelihood ratio tests (LRTs): M0/M3, M1a/M2a and M7/M8. M0 (one-ratio) assumes that all sites have the same ω ratio. LRTs were also implemented to verify the positive selection of each model by comparing M0/M3, M1a/M2a and M7/M8.

2.2.3. Structural modeling

Three dimensional structures were modeled using SWISS-MODEL, a fully automated protein structure homology modeling server (http://swissmodel.expasy.org), and Drosophila PGRP (PDB code: 2F2L) was used as the template [13]. Model quality was evaluated by Anolea and QMEAN; the structure of model was visualized by using PyMol (http://www.pymol.org).

Fig. 1. The PGRP family of C. gigas. (A) Multiple sequence alignment of amidase/PGRP domains. Catalytic residues for amidase activity and specific PGN recognition were indicated by blue and red triangles, respectively. Disulfide bridges are shown with red lines. (B) Phylogeny of 12 PGRP genes from C. gigas. An unrooted neighbor-joining distance tree was constructed from the alignment of amino acid sequences presented in Fig. 1A. Numbers on interior branches represent bootstrap values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3. Results and discussion

Five CgPGRP genes including CgPGRPS1S, CgPGRPS1L, CgPGRPS2, CgPGRPS3 and CgPRGPL, were previously identified [8,9]. Here, ESTs with homology to a PGRP domain were detected in the C. gigas database at NCBI. After assembly and redundancy removal, seven novel CgPGRP genes were identified (Fig. 1); these sequences, coupled with the previously cloned CgPRGs, constitute the PGRP gene family of C. gigas. The SMART program predicted that all these genes encode one conserved amidase/PGRP domain. The phylogenetic analysis based on N-J method revealed that this CgPRGP gene family is divided into two groups, CgPRGPS and CgPRGPL. The CgPRGPS group can be further split into five subgroups, CgPRGPS1A, CgPRGPS1B, CgPRGPS2, CgPRGPS3 and CgPRGPS4 (Fig. 1A). Multiple alignments of amino acid sequences showed a varied degree of sequence identity (from 44.8 to 93.75%) within the CgPGRP protein family. Interestingly, these catalytic residues responsible for amidase activity are almost identical in all CgPGRP proteins (Fig. 1B), suggesting that these proteins retain conserved amidase activity [14]. Moreover, four residues (128G, 129W, 148R, 153V) involved in specific PGN recognition sites [13] are highly conserved with a certain degree of conservation, implying both their crucial function and that these sites have been under evolutionary pressure to keep the capacity of PGN recognition.

PGN structures from different bacteria present considerable variability in peptide stems, in which various extents of cross-linking can introduce additional variability [2]. Correspondingly, we observe several substitutions in these sites in the different PGN recognition sites. It should be noted that the 153V site shows an obviously higher non-synonymous substitution rate (153V → A/I/E) (Fig. 1A). In Drosophila, this site plays an important role in enhancing the binding of PGNs to PGRPs [15]. Thus, these substitutions could create a more flexible response to different microbial challenges.

To test whether positive selection has promoted accelerated diversification within the CgPGRP family, codon-substitution models were employed to estimate the ratio of non-synonymous and synonymous substitutions, also known as ω (Table 1). In the model M0, the average ω is 0.298, suggesting that purifying selection was a major force during evolution of the CgPGRP family. However, in three likelihood ratio tests (LRTs), all alternative models (M3, M2a, M8) were a significantly better fit (p < 0.001) than the relevant null models (M0, M1a, M7), indicating that CgPRGs were subjected to strong positive selection (ω = 3.035–4.143) (Table 1). There were seven sites detected in models M3, M2a, and M8 with posterior probabilities of at least 0.95. To explore potential effect of these positively selected sites on the 3D configuration of the proteins, we modeled CgPRGP using Drosophila PGRP as the template with high quality (see Supplementary Material) [13]. The results show that CgPRGP folding likely consists of a central β-sheet with five β-strands and three α-helices and coils (Fig. 2). The amino acids involved in amidase activity and PGN recognition are closely spaced and form two distinct active centers. Seven positive selection sites are located primarily in coils and α-helices, including four sites (87T, 90H, 130S, 158Q) in coils and two sites (110T, 115Q) in helix x1 and one site (196H) in a β-strand. None of positively selected amino acids are located in the central β-sheet or either active center (Fig. 2), a finding that is consistent with results see in the insect PGRP family where non-synonymous substitutions occur primarily at the periphery of coils rather than in β-strands or in PGN recognition sites [16]. These results strongly suggest that there is convergent evolution in PRGs from mollusks and arthropods.

In conclusion, our data support the hypothesis that positive selection has been driving the rapid evolution of CgPGRPs in oysters, whereby the PGRP structure could be rapidly expanded to discriminate between, or cope with, a diversity of pathogenic bacteria.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Log-likelihood values and parameter estimates for the PGRP family.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>p</td>
</tr>
<tr>
<td>M0 (one ratio)</td>
<td>1</td>
</tr>
<tr>
<td>M3 (discrete)</td>
<td>5</td>
</tr>
<tr>
<td>M1a (neutral)</td>
<td>2</td>
</tr>
<tr>
<td>M2a (selection)</td>
<td>2</td>
</tr>
<tr>
<td>M7 (beta)</td>
<td>2</td>
</tr>
<tr>
<td>M8 (beta & ω)</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: p is the number of parameters in the ω distribution; χ² is the log likelihood; s is ratio of transition/transversion; ω is ratio of dN/dS; Δ is the twice log likelihood difference between null models (M1a and M7) and alternative models (M2a and M8); χ² indicates the value of chi-square test. Parameters indicating positive selection are presented in bold. Positive selection sites were identified by Naive empirical Bayes (NEB) methods under M3 and the Bayes empirical Bayes (BEB) methods under M2a and M8. The posterior probabilities (p) ≥ 0.95 and p ≥ 0.99 are indicated by * and **, respectively.
Acknowledgments

This work was supported by a National Science Foundation of China (No.41176150), a National Basic Research Program of China (No. 2010CB126404) and a Joint Funds of NSFC-Guangdong of China (U1201215). We thank Prof. Elizabeth De Stasio for her editing of the manuscript.

Appendix A. Supplementary material

Aligning protein sequences with secondary structure and evaluating model quality. The PGRP domain of CgPGRPS3 was used as a target and homology modeled with the Drosophila PGRP (2F2LX), and the corresponding secondary structure was also aligned and listed below of protein sequence, where the h indicates helix and s refers to beta sheet, respectively. The global and local model quality was evaluated by Anolea and QMEAN, which provided the entire structure and local residue error estimates.

References