Generalized Frobenius Integrable Decompositions for (2+1)-Dimensional Partial Differential Equations
Yong, Fang1; Yuan, Kong1
2015
发表期刊JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
卷号12期号:9页码:2011-2015
摘要Frobenius integrable decompositions are introduced for partial differential equations. Then, such integrable decompositions are generalized, which are applied to (2+1)-dimensional partial differential equations. Some generalized soliton equations are obtained which possess generalized Frobenius integrable decompositions, such as (2+1)-dimensional KdV equation, (2+1)-dimensional Burgers equation, (2+1)-dimensional dispersion equation, etc. Meanwhile, their special cases are just well-known KdV equation, Burgers equation, fifth-order dispersion equation, etc.
部门归属LMB
关键词Integrable Decompositions (2+1) Dimensional Soliton Equations Backlund Transformations Operator Transformation
学科领域Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
URL查看原文
文献类型期刊论文
条目标识符http://ir.scsio.ac.cn/handle/344004/14774
专题中科院海洋生物资源可持续利用重点实验室
作者单位1.[Yong, Fang] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanol, Guangzhou 510301, Guangdong, Peoples R China
2.[Yuan, Kong] Huazhong Univ Sci & Technol, Sch Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Yong, Fang,Yuan, Kong. Generalized Frobenius Integrable Decompositions for (2+1)-Dimensional Partial Differential Equations[J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE,2015,12(9):2011-2015.
APA Yong, Fang,&Yuan, Kong.(2015).Generalized Frobenius Integrable Decompositions for (2+1)-Dimensional Partial Differential Equations.JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE,12(9),2011-2015.
MLA Yong, Fang,et al."Generalized Frobenius Integrable Decompositions for (2+1)-Dimensional Partial Differential Equations".JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 12.9(2015):2011-2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。