SCSIO OpenIR  > 热带海洋环境国家重点实验室(LTO)
Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress
Chen, Ke; Li, Erchao; Li, Tongyu; Xu, Chang; Wang, Xiaodan; Lin, Heizhao; Qin, Jian G.; Chen, Liqiao; ecli@bio.ecnu.edu.cn; lqchen@bio.ecnu.edu.cn
2015
Source PublicationPLOS ONE
Volume10Issue:7Pages:e0131503-
Subtype1932-6203
AbstractThe Pacific white shrimp Litopenaeus vannamei is a euryhaline penaeid species that shows ontogenetic adaptations to salinity, with its larvae inhabiting oceanic environments and postlarvae and juveniles inhabiting estuaries and lagoons. Ontogenetic adaptations to salinity manifest in L. vannamei through strong hyper-osmoregulatory and hypo-osmoregulatory patterns and an ability to tolerate extremely low salinity levels. To understand this adaptive mechanism to salinity stress, RNA-seq was used to compare the transcriptomic response of L. vannamei to changes in salinity from 30 (control) to 3 practical salinity units (psu) for 8 weeks. In total, 26,034 genes were obtained from the hepatopancreas tissue of L. vannamei using the Illumina HiSeq 2000 system, and 855 genes showed significant changes in expression under salinity stress. Eighteen top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly involved in physiological responses, particularly in lipid metabolism, including fatty-acid biosynthesis, arachidonic acid metabolism and glycosphingolipid and glycosaminoglycan metabolism. Lipids or fatty acids can reduce osmotic stress in L. vannamei by providing additional energy or changing the membrane structure to allow osmoregulation in relevant organs, such as the gills. Steroid hormone biosynthesis and the phosphonate and phosphinate metabolism pathways were also involved in the adaptation of L. vannamei to low salinity, and the differential expression patterns of 20 randomly selected genes were validated by quantitative real-time PCR (qPCR). This study is the first report on the long-term adaptive transcriptomic response of L. vannamei to low salinity, and the results will further our understanding of the mechanisms underlying osmoregulation in euryhaline crustaceans.
Department[Chen, Ke; Li, Erchao; Li, Tongyu; Xu, Chang; Wang, Xiaodan; Chen, Liqiao] E China Normal Univ, Lab Aquaculture Nutr & Environm Hlth, Sch Life Sci, Shanghai 200062, Peoples R China; [Lin, Heizhao] Shenzhen Base South China Sea Fisheries Res Inst, Shenzhen, Peoples R China; [Qin, Jian G.] Flinders Univ S Australia, Sch Biol Sci, Adelaide, SA 5001, Australia ; LTO
Subject AreaScience & Technology - Other Topics
Indexed BySCI
Document Type期刊论文
Identifierhttp://ir.scsio.ac.cn/handle/344004/15073
Collection热带海洋环境国家重点实验室(LTO)
Corresponding Authorecli@bio.ecnu.edu.cn; lqchen@bio.ecnu.edu.cn
Recommended Citation
GB/T 7714
Chen, Ke,Li, Erchao,Li, Tongyu,et al. Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress[J]. PLOS ONE,2015,10(7):e0131503-.
APA Chen, Ke.,Li, Erchao.,Li, Tongyu.,Xu, Chang.,Wang, Xiaodan.,...&lqchen@bio.ecnu.edu.cn.(2015).Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress.PLOS ONE,10(7),e0131503-.
MLA Chen, Ke,et al."Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress".PLOS ONE 10.7(2015):e0131503-.
Files in This Item:
File Name/Size DocType Version Access License
Transcriptome and Mo(4467KB)期刊论文作者接受稿开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.